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Abstract

Growing interest in understanding ecological patterns from phylogenetic and functional perspectives has driven the
development of metrics that capture variation in evolutionary histories or ecological functions of species. Recently, an
integrated framework based on Hill numbers was developed that measures three dimensions of biodiversity based on
abundance, phylogeny and function of species. This framework is highly flexible, allowing comparison of those diversity
dimensions, including different aspects of a single dimension and their integration into a single measure. The behavior of
those metrics with regard to variation in data structure has not been explored in detail, yet is critical for ensuring an
appropriate match between the concept and its measurement. We evaluated how each metric responds to particular data
structures and developed a new metric for functional biodiversity. The phylogenetic metric is sensitive to variation in the
topology of phylogenetic trees, including variation in the relative lengths of basal, internal and terminal branches. In
contrast, the functional metric exhibited multiple shortcomings: (1) species that are functionally redundant contribute
nothing to functional diversity and (2) a single highly distinct species causes functional diversity to approach the minimum
possible value. We introduced an alternative, improved metric based on functional dispersion that solves both of these
problems. In addition, the new metric exhibited more desirable behavior when based on multiple traits.
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Introduction

Biodiversity is a multidimensional concept that includes all

aspects of biological variation from those associated with genetics

to ecosystem processes [1]. Nonetheless, biodiversity often is

studied using a species-based approach with regard to one or more

dimensions that reflect the number of species and variation among

them with respect to abundances, evolutionary histories [2,3] or

functional characteristics [4–6]. Ecological and biogeographic

research has been dominated by considerations of taxonomic

distinctiveness in which interspecific differences between all

possible pairs of species are ignored or considered to be equal.

Often species richness is used as a proxy for all aspects (e.g.

evenness, dominance, dispersion, diversity) and dimensions (e.g.

taxonomic, phylogenetic, functional, genetic) of biodiversity.

Recently, a consensus has emerged that such taxonomic

approaches do not sufficiently capture important biological

variation, with functional and phylogenetic dimensions often

responding to environmental factors differently than does the

taxonomic dimension [2–4,7,8].

As a result of the growing interest in phylogenetic and functional

approaches for studying community ecology, conservation biology

and biogeography, new metrics have been developed to estimate

phylogenetic biodiversity (reviewed by [9]) or functional biodiver-

sity (reviewed by [10]), or that integrate multiple dimensions into a

single measure [6,11–16], with a goal of making meaningful

comparisons between dimensions of diversity and between study

systems (i.e. taxa or sites). Nonetheless, comparisons have been

confounded because many metrics have undefined units, different

units or lack conceptual clarity concerning inherent properties

[6,17]. A framework was developed recently [6] that uses a single

conceptual approach for measuring biodiversity based on inter-

specific differences in abundance, phylogeny and function. This

approach also permits the construction of homologous integrated

metrics that synthesize data with regard to any combination of

dimensions. Nonetheless, the behavior of these metrics has not

been explored for exemplar or empirical data. Herein, we use

exemplar data structures to evaluate the behavior of these metrics

with respect to variation in species abundance, phylogeny or

function and introduce an alternative metric for functional

biodiversity based on functional dispersion, thereby avoiding

some of the shortcomings of the original metric [6].
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An integrated framework
Hill numbers [18] provide the basis for an integrated framework

for measuring and comparing biodiversity. The original Hill

number formulation estimates the effective number of species in

an assemblage if individuals were distributed such that all species

in the assemblage are equally abundant (i.e. have equal

proportional abundances). Scheiner [6] expanded this framework

to include proportional phylogenetic divergence and proportional

functional distinctiveness. An alternative approach based on Hill

numbers exists that integrates abundance and phylogenetic [12] or

abundance and functional information [16]; we briefly compare

the conceptual bases for these different approaches in the

discussion. The use of Hill numbers ensures that all metrics are

in the same units (effective number of species) and are on the same

scale (number of species, ranging from 1 to S). In addition, Hill

numbers have desirable mathematical properties (e.g. the replica-

tion principle) that are lacking in entropies such as Shannon

diversity, Gini-Simpson index or Rao’s quadratic entropy. These

properties provide logical and intuitive results, facilitating com-

parisons among dimensions and studies [6,12,16,19].

The general form of the Hill number metric is:

qD~
XS

i~1
x

q
i

� �1= 1{qð Þ
ð1Þ

where S is species richness, xi represents the proportional

abundance (pi), proportional lineage divergence (li) or proportional

functional distinctiveness (fi) of species i and q is a factor (i.e. the

order of the diversity metric) that determines how relative

proportions are weighted. As q increases, species that are more

abundant, divergent or distinctive contribute disproportionately

more to the magnitude of diversity. Values of 0, 1 or 2 for q are

common and associated with frequently used metrics: when q = 0,
0D equals species richness; when q = 2, 2D is the Gini-Simpson

index, also known as the inverse Simpson index [19]. The measure

is undefined when q = 1, requiring a limit formulation:

1D~ lim q?1
qD~ exp {

XS

i~1
xi log xi

� �
ð2Þ

where 1D equals the exponential of Shannon diversity.

Exemplar data
We examined the behavior of metrics from the integrated

framework of Scheiner [6] using exemplar data designed to reflect

important biological patterns of variation in abundance, phylog-

eny or function that may occur in assemblages. We begin by

examining the independent behavior of each dimension –

abundance, phylogeny and function – with most of our effort

focusing on the last because it has been the least explored in the

literature. These explorations lead to the development of an

alternative functional metric. In all analyses, we use q = 1 so that

species are weighted exactly by their proportional abundance,

proportional lineage divergence or proportional functional dis-

tinctness. The behavior of Hill numbers for other non-zero values

of q is qualitatively similar to the behavior when q = 1 [16]. Metrics

were calculated with script files written in Matlab 7.14.0.739

(available from SJP on request).

Abundance diversity
Abundance diversity, qD(A), varies as a function of heteroge-

neity in the relative abundances of species. Exemplar abundance

distributions (Table 1) were created to demonstrate maximum

diversity (i.e. perfectly even distributions for which all pi = 1/S), the

effect of a single dominant species, the difference between even

distributions of rare species compared to even distributions of

common species and how randomly generated abundances

translate to values of 1D(A). (Random numbers were generated

via the ‘‘rand’’ function in Microsoft Excel Ver. 14.0.7116.5000.)

This type of examination has been previously conducted for qD(A)

and is presented here to provide context for similar explorations of

phylogenetic and functional diversity.
qD(A) for an assemblage with a perfectly even distribution of

individuals among species will always equal S (Table 1; assem-

blages A and B) for any value of q. Because values of 1D(A) are

based on proportional abundances of species, assemblages in

which all common species are equally abundant (assemblages G–I)

have greater diversity than do communities in which rare species

are equally abundant (assemblages C–F). qD(A) is independent of

total abundance. Assemblages with the same proportional

abundances (e.g. A and B, C and D) have the same 1D(A).

Assemblages with one dominant species (assemblages C–F) have

low diversity, with 1D(A) approaching 1.0 as the proportional

abundance of the dominant species increases. Assemblages with

randomly generated abundances (assemblages J and K) have

intermediate values of 1D(A); however, this is partly a result of

sample sizes (i.e. ranges of the random values were constrained: 1–

20 for assemblage J and 1–100 for assemblage K). Randomly

generated abundances that vary more will generally have smaller
1D(A) values due to a less even distribution of individuals.

Phylogenetic diversity
Phylogenetic diversity, qD(P), reflects variation in the propor-

tional lineage divergences of species. The total amount of

divergence in a phylogeny (i.e. Faith’s PD [20]) is analogous to

the total number of individuals in an assemblage and proportional

lineage divergences (li) are analogous to proportional abundances

(pi). Here we demonstrate the behavior of qD(P) with examples

that differ in the topology of the phylogenetic tree, including a

perfectly symmetrical tree (Figure 1A), a tree that has two identical

clades but that is asymmetrical within each clade (Figure 1B), a

tree that is symmetrical toward the terminal branches but that is

asymmetrical deeper in evolutionary time (Figure 1C) and a tree

that has many closely related species in a polytomy and one

distantly related species (Figure 1D). In addition, for each

topology, multiple patterns of branch length are explored to

demonstrate how variation in basal, terminal and internal

branches affect phylogenetic diversity (Table 2). In systematics,

symmetry typically refers only to topology. Our definition of

symmetry has an additional constraint, requiring both topology

and branch lengths to be the same for each branch point of the

tree. Consequently, only a tree that is symmetrical throughout

evolutionary time (Figure 1A) is perfectly symmetrical by this

definition. These differences in topology are also related to the

property of ‘‘regularity’’ as defined by Pavoine and Bonsall [8].
qD(P) has a maximum value equal to species richness when all

species in a phylogeny have equal divergences, which occurs when

the phylogeny is perfectly symmetrical (Table 2; Figure 1A). Any

deviations from perfect symmetry will decrease qD(P), whether

asymmetry occurs within clades of a phylogeny (Figure 1B) or

exists more basally in the phylogeny (Figure 1C). Values of qD(P)

are lowest if a tree has many closely related species and one

distantly related species (Figure 1D). The theoretical minimum

value for qD(P) is 2.0, as any phylogeny has to have at least two

branches; however, it is unlikely that 1D(P) would approach 2.0

unless the most distantly related species was extraordinarily distant

(Table 2, tree D4). Because qD(P) is based on proportional lineage

divergences, the magnitude of the effect of asymmetry in a tree is
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contingent on the amount of evolutionary time associated with

that asymmetry. For example, if branches 1–7 in tree D are long

compared to branch 9 (Table 2, tree D2), the tree is highly

symmetrical for most of evolutionary time and 1D(P) approaches

S. In contrast, if branches 1–7 are short compared to branch 9

(Table 2, trees D3 and D4), the tree is highly asymmetrical for

most of evolutionary time and 1D(P) decreases substantially.

One of the desirable characteristics of Hill numbers is that they

obey the replication principle: when combining N equally

weighted phylogenetically, functionally or taxonomically distinct

assemblages (i.e. assemblages with no lineages, functions or species

in common) that have the same diversity X, the pooled

assemblages will have qD~X|N [19]. This framework exhibits

the replication principle. For any set of branch lengths for tree A

(Figure 1), 1D(P) = 4.0 for each half of the tree and 1D(P) = 8.0 for

the entire tree. Similarly, because each half of tree B has the same

topology, 1D(P) for each half of the tree is the same and 1D(P) for

the entire assemblage is twice that value. For phylogenetic data,

replication holds only when the trees are combined at the root,

and species in the two assemblages belong to separate clades.

Otherwise, the combined tree will result in new branching points

that are interior to each of the original trees and the total lineage

length (i.e. Faith’s PD) will not be a simple sum of the values for

the two original trees. The reason that replication is more

restrictive for phylogenetic diversity is that a cladogram includes

relational information, whereas abundances do not do so. Changes

in relationships necessarily alter the phylogenetic diversity

measure. A commonly used approach for phylogenetic diversity

is based on Rao’s Q, for which a numbers equivalent was

developed [21]. However, Rao’s Q used this way fails the

replication principle [19].

Our framework can be used to evaluate the relative symmetry of

different hierarchical levels of a phylogeny by splitting phylogenies

into clades and calculating qD(P) for each clade and for the entire

tree. The sum of qD(P) for clades from a phylogeny that are similar

in symmetry will approach the value of qD(P) for the entire

phylogeny. If each clade exhibits greater symmetry than the entire

tree, the sum of qD(P) from the clades will be greater than the

value for the entire tree. In contrast, if each clade is less

symmetrical than the entire tree, the sum of qD(P) from the clades

will be less than the value for the entire tree. Other measures of

tree symmetry exist [22–25]; our suggested usage of qD(P) is not

intended to replace those, but to provide a measure that can be

used in the context of other dimensions of diversity.

Functional diversity
Functional diversity, qD(F), measures variation in the functional

distinctiveness of species, which Scheiner [6] based on non-

overlapping volumes in functional space. Those non-overlapping

volumes are calculated from minimum functional distances (i.e. for

each species, the distance to the nearest neighbor in functional

space). The total unique functional volume is analogous to the

total number of individuals in an assemblage for qD(A) and to the

total amount of divergence in a phylogeny for qD(P). One

important difference is that non-unique functional volumes do not

contribute to qD(F), whereas all abundances or branches in a

phylogeny contribute to qD(A) or qD(P), respectively. qD(F) varies

as a function of heterogeneity in functional uniqueness among

species and has a maximum value equal to S when all species in an

assemblage have equal proportional unique functional volumes.

Functional trait values can be standardized in two ways [6]. First,

all traits are standardized to a mean of zero and standard deviation

of 1 (the z-transformation), which puts all traits on the same scale.

Second, traits can be further standardized by the effect that each
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has on some ecological function. The second standardization is not

trivial. To date, all analyses of functional diversity are based on the

first standardization only. To distinguish these two types of

standardization, Scheiner [6] referred to metrics based only on a z-

transformation as a ‘‘trait-based metric’’ denoted as qD(T) and

used qD(F) to refer to metrics that included standardizations based

on functional effect or as a general reference for functional

diversity.

Scheiner [6] conceived qD(T) within the context of a set of

points in functional space that could be enclosed by a convex

surface and the metric is well behaved for such data. However,

some assemblages have a single species that is functionally quite

distinctive from all other species, or have multiple clusters of

functionally similar species that are very distinct from other such

clusters. In such cases, the behavior of qD(T) is not clear. We

explore some of these issues via exemplar datasets that were

created to demonstrate maximal qD(T), the insensitivity of qD(T)

to the range of functional values in an assemblage, effects of

functional redundancy and highly distinct functional values on
qD(T) and how qD(T) responds to randomly structured functional

trait values (Table 3). For simplicity in these examples, the

function of each species is described by a single trait value;

however, the same general behaviors hold for functional diversity

based on multiple traits.

If all species have the same minimum functional distances

(Table 3, traits A and B), all species have equal proportional

unique functional volumes (fi), resulting in a maximum qD(T). In

contrast, 1D(T) will have the minimum value of 1.0 for traits that

have no unique functional volumes (traits C and D). 1D(T) will

approach 1.0 for traits that have similar values for many species

but for which one species is highly functionally distinct (traits E

and F). Functional trait values that are randomly generated from a

uniform distribution (traits G and H) will produce values of 1D(T)

closer to S than to 1 because minimum functional distances

between such values tend to be even. Similar to the effect of

randomly generated abundances on qD(A), randomly generated

values with greater dispersion (trait H compared to trait G)

produce less even distributions and lower values of qD(T).

Because qD(T) only uses information associated with the nearest

functional neighbor for each species, it is not sensitive to some

kinds of important functional variability among species. For

example, traits A and B have the same qD(T) value, despite A

Figure 1. Four cladograms that represent phylogenic relationships among 8 species. Phylogenetic trees differ in the amount and
distribution of symmetry. Numbers identify particular branches in each tree, with numbers 1–8 representing tips associated with species. A) A
perfectly symmetrical tree. B) A tree that has equally symmetrical basal clades, but that is asymmetrical within each clade. C) A tree that is symmetrical
toward the tips, but asymmetrical toward the root of the tree. D) A tree that is symmetrical within the polytomy associated with species 1–7, but that
has one distantly related species.
doi:10.1371/journal.pone.0105818.g001
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having completely evenly-spaced values and B having two groups

of species with very different functional values. In addition, qD(T)

cannot distinguish between a trait with redundancy for many

functional values (trait C) and a trait with no variation in function

(trait D), because in each scenario, no species is functionally

unique and functionally redundant species contribute nothing to
qD(T). Finally, qD(T) is sensitive to highly distinct functional values

(traits E and F) because it is based on proportional unique

functional volumes, and highly distinct functional values can

represent nearly all of the total unique functional volume (V),

causing qD(T) to approach 1 (Table 3).

A functional dispersion metric based on Hill numbers
As an alternative to a metric based on minimum functional

distances and the concept of unique functional volume, we

propose a metric based on total pairwise functional distances and

the concept of functional dispersion. Our new metric replaces the

minimum functional distance (di in [6]) with the total functional

distance of each species to all other species:

ti~
XS

j~1
dij ð3Þ

where dij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k sik{sjk

� �2
q

, the functional distance between the

ith and jth species, and sik is the standardized functional value of

the kth trait for the ith species. Distance metrics other than

Euclidian can be used. The total functional distance of all species is

T~
PS

i~1 ti, which is the equivalent to the functional attribute

diversity measure (FAD of [26]). The proportional total functional

distance of the ith species is fi~ti=T . Using the Scheiner

framework [6], functional diversity is:

qD T�ð Þ~
XS

i~1
f

q
i

� �1= 1{qð Þ
ð4Þ

This new metric is similar to the previously proposed trait-based

metric, qD(T), except now functional diversity is measured as the

total functional distance instead of as the unique functional

volume. We use qD(T*) to distinguish our new metric from the

original definition for trait-based diversity. In addition, qD(F*)

indicates functional diversity based on total functional distance

when standardizations based on contributions of traits to

ecological function are employed. Our new metric reflects the

functional dispersion of species, has a range from 1 to S and has

maximum values when all species have equal total functional

distances.
qD(T*) exhibits two noteworthy improvements compared to

qD(T). First, 1D(T*) can distinguish an even distribution of

functional values associated with functionally redundant species

(trait C in Table 3) from a distribution of invariant functional

values (trait D) and gives intuitively consistent results (Table 3).

Second, a single functionally distinct species will not cause values

of 1D(T*) to approach 1.0, though values may decrease

appreciably (traits A, E and F). More specifically, the only

difference between functional data for traits A, E and F is the value

for Species 10, which changes from 10 to 100 to 1000. These

changes cause 1D(T) to decrease from 10 to 1.07, whereas 1D(T*)

only decreases from 9.77 to 6.09. Nonetheless, a potentially

undesirable behavior remains. Randomly generated trait values

(traits G and H) resulted in highly even distributions of

proportional total functional distances, indicating that this metric

also is not able to distinguish between random patterns of variation

in functional dispersion and maximal functional dispersion that

results from limiting ecological similarity.

The replication principle is even more restrictive for functional

data than for phylogenetic data. For functional data, replication

holds only under two conditions: (1) the assemblages consist of

unique species with redundant functional values (e.g. trait C in

Table 3 split into two assemblages {1, 3, 5, 7, 9} and {2, 4, 6, 8,

10}) or (2) when all assemblages have identical total functional

distances (T) and all pairs of assemblages have identical mean

distances [16]. As with phylogenetic information, functional

distinctiveness involves relational information. The additional

restrictions occur because functional space does not have a

uniquely defined root as does a cladogram.

Simultaneous consideration of multiple traits
Although qD(A) can be calculated based on different measures

of abundance (e.g. number of individuals or frequency of

occurrence) and many traits are combined to create the

phylogenetic tree used to estimate qD(P), each of these dimensions

of biodiversity generally are calculated based on a single estimate

of abundance or a single estimate of evolutionary divergence. In

contrast, qD(T) and qD(T*) are formulated to be calculated based

on multiple traits. This flexibility of qD(T) and qD(T*) requires

careful consideration in the selection of functional traits because

relationships between traits (e.g. multicollinearity) may affect

diversity. In addition, calculating functional diversity separately for

different functional components (e.g. diet, foraging method, body

size, biomass production) may provide clues about the processes

responsible for patterns of diversity. We explore the effects of

combining traits with different patterns and relationships (i.e.

correlated positively or negatively, or randomly associated) on
qD(T) and qD(T*) and compared those to diversity based on only

one of those functional traits (Table 4).

In general, the effect on 1D(T) or 1D(T*) of combining different

patterns of trait values was not contingent on correlations between

traits (Table 4). In some of these comparisons, functional diversity

could not or was unlikely to increase or decrease because 1D(T) or
1D(T*) for a single trait was at or near the maximum or minimum

value. 1D(T) increased appreciably (i.e. by more than 1.0) when a

trait with no unique functional volume (traits C and D) was

combined with randomly generated trait values or traits with even

distributions. For example, 1D(T) = 10.0 and 1.0 for traits A and

B, respectively; however, consideration of both traits resulted in an

equal distribution of distinct functional volume among all species

(Figure 2A), essentially nullifying the effect of redundancy in the

structure of trait B. Alternatively, 1D(T) declined appreciably when

a trait with one distinct functional value (traits E and F) or with

randomly generated values (traits G and H) was combined with a

trait with perfectly even proportional unique functional volumes

(traits A and B). For example, 1D(T) = 10.0 and 8.8 for traits B

and G, respectively; however, simultaneous consideration of these

traits resulted in great heterogeneity among species in their unique

functional volumes (Figure 2B) and greatly reduced 1D(T) to 3.95.

Moreover, 1D(T) generally declined when at least one of the two

traits had a random pattern (traits G and H). Interestingly, 1D(T)

decreased appreciably if both traits were based on randomly

generated values, especially when they were positively or

negatively correlated (Table 4).

In contrast, the metric based on functional dispersion, 1D(T*),

declined appreciably only when a trait with one distinct value

(traits E and F) was combined with other trait structures (Table 4).

Only for invariant trait D did 1D(T*) typically increase appreciably

when combined with other trait structures. In general, the absolute

differences between 1D(T) based on one trait and based on two
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traits was greater (mean change of 2.69) than for 1D(T*) (mean

change of 1.67). This result is likely to be typical, as 1D(T) is based

on the smallest functional distance of each species, which only

gives weight to the single trait value with the least difference

among species, whereas 1D(T*) is based on the total functional

distance, which will give more equal weight to all trait values.

These results highlight the importance of trait selection when

evaluating functional diversity, which has been highlighted

previously as a general concern for estimating functional diversity

[10,27–29]. For 1D(T) and 1D(T*), particular care should be taken

with respect to traits that are characterized by a single highly

distinct value (traits E or F), as this greatly reduces estimates of

functional diversity based on other traits (Table 4). In addition,

care should be taken with regard to redundant (i.e. collinear) traits,

as such relationships can result in a lower estimates of diversity

Figure 2. Examples of unique functional volumes in 2-dimensional trait space. A) An example in which all species have equal unique
functional volumes that maximize functional diversity (traits A and C from Table 3). B) An example in which unique functional volumes differ greatly
among species (traits B and G from Table 3). Gray dots represent locations of species in trait space and black circles represent unique functional
volumes (i.e. radius equal to half the distance to the nearest neighbor in trait space). Axes are drawn such that units are equivalent and perfect circles
represent associated unique functional volumes.
doi:10.1371/journal.pone.0105818.g002
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than would occur for each redundant trait alone (e.g. diagonals of

Table 4).

As with qD(T), qD(T*) can be combined with abundance and

phylogenetic information in all possible combinations [qD(AT*),
qD(PT*) and qD(APT*)]. We will examine such combined metrics

in a future paper that explores patterns of diversity for bats from

Costa Rica and Peru (Presley et al. in prep.).

Comparisons with an alternative integrated approach
Anne Chao and collaborators [12,16,19] present an alternative

method for combining abundance information with phylogenetic

or with functional information within the Hill number framework.

In their formulation, abundance and phylogenetic information are

combined as:

qD P�ð Þ~ 1

U

XS

i~1
Li

ai

U

� �q� �1= 1{qð Þ
ð5Þ

where Li is the length of branch i, ai is the total abundance of the

species descended from that branch, and U is the total

evolutionary time interval. They also define a diversity measure

in units of lineage length, qPD P�ð Þ~U|D P�ð Þ that can be

linked to other metrics derived from Faith’s PD. We use qD(P*)

and qPD(P*) to indicate their metrics because their notation qD(T),

where T indicates time, can be confused with our usage of T to

indicate the use of functional traits.

Abundance and functional information are combined as:

qD Qð Þ~
XS

i~1

XS

j~1

dij

Q
pipj

� �q

� �1=2 1{qð Þ
ð6Þ

where Q is Rao’s quadratic entropy for functional diversity of an

assemblage (typically called Rao’s Q) and is calculated as:

Q~
XS

j~1

XS

i~1
dijpipj ð7Þ

Again, there is an equivalently defined metric in units of

functional distances (see Chiu and Chao [16] for details). The

limitations described above concerning replication for phyloge-

netic and for functional data hold for each of these approaches.

The metrics qD(P*) and qD(Q) can be interpreted as the effective

number of equally abundant species for a given total phylogenetic

divergence and the effective number of equally abundant species

for a given total functional distinctiveness, respectively. When all

species are equally abundant, the metrics are equivalent to Faith’s

PD and to FAD, respectively. These are measures of abundance

diversity weighed by total phylogenetic divergence or by total

functional distinctiveness. In their approach, phylogenetic and

functional diversity are measured as total divergence and

distinctiveness, rather than as variation in divergence and

distinctiveness as in the approach of Scheiner [6]. Their approach

lacks the ability to provide measures of phylogenetic or functional

diversity in units of effective numbers of species that are

independent of abundance information except in the restricted

case that all species are equally abundant. Nor does it permit the

combining of phylogenetic and functional information. In

contrast, our approach does not incorporate information about

total phylogenetic depth or the total magnitude of functional

distances. In our approach, those quantities are treated as

independent in the same way that Hill diversity measured using

abundances is independent of the total number of individuals

(Table 1). Thus, these various metrics are based on different

aspects of phylogenetic and functional diversity – variability versus

total magnitude – resulting in numbers equivalents that represent

different properties of communities. The challenge is to discover

how to link all of these metrics to theories about the ecological and

evolutionary processes that shape communities.

Conclusions

Our framework is promising for the development of diversity

metrics that have desirable properties and explicit units that

facilitate ecologically meaningful comparisons among dimensions

and among studies. In addition, our framework has two unique

attributes that make it a powerful approach for considerations of

biodiversity: (1) new metrics that measure different aspects of each

dimension of biodiversity or new dimensions of biodiversity can be

developed relatively easily and (2) it allows multiple aspects or

dimensions of biodiversity to be integrated into a single measure.

The flexibility and ease of developing new metrics for this

framework is highlighted by the development of an alternative

trait-based functional diversity metric, qD(T*), based on total

functional distance. Because qD(T) and qD(T*) measure different

aspects of trait-based diversity associated with unique functional

volumes and functional dispersion, respectively, each may have

suitable uses for examining ecological or evolutionary processes

responsible for patterns of diversity. Scheiner [6] detailed how to

integrate information from multiple dimensions of biodiversity (i.e.

abundance, phylogeny and function) into a single estimate. Such

an approach can also be used to integrate different aspects of

biodiversity within dimensions into a single measure. For example,

for the functional dimension, one might wish to independently

estimate diversity based on different niche axes (e.g. diet, foraging

method, habitat use, masticatory mode, body size). These

measures of qD(T*) could then be combined into a single value

of functional diversity. Similarly, ‘‘importance’’ diversity could be

separately calculated based on number of individuals, biomass and

frequency of occurrence (following the traditional use of impor-

tance values developed in the vegetation literature [30,31]), and

then integrated into a single metric that simultaneously accounts

for each of these ways of being biologically ‘‘important’’. Such

separate and integrated measures may be useful in testing theories

about the myriad ecological and evolutionary processes responsi-

ble for patterns of biodiversity [8].
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